Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Chinese Journal of Radiological Medicine and Protection ; (12): 23-27, 2015.
Article in Chinese | WPRIM | ID: wpr-466244

ABSTRACT

Objective To study the characteristics of cell engraftment in mice at a lower dose under nonlethal radiated condition.Methods A syngeneic C57BL/6 mouse model,transplanted with 1 × 107 bone marrow cells and exposed to 2.5 Gy whole body irradiation (WBI),was selected to study the chimerism of cells from green fluorescent protein positive (GFP +) transgenic mice.The control group was injected with GFP + cells without receiving irradiation.In addition,an allogenic transplantation model of BALB/c mice was also investigated which was infused by GFP + cells from C57BL/6 mice.The engraftment of bone marrow-derived cells (BMDCs) was detected by immunohistochemistry in bone marrow,liver,lung,small intestine and spleen.Results The transplanted bone marrow cells successfully grafted in the haematopoietic tissues from syngeneic GFP transgenic mice.The transplanted GFP+ cells were also detected in the non-haematopoietic tissues,such as the small intestine,liver,spleen and lung,after irradiation.However,a lethal dose irradiation of 8 Gy was required to establish successful chimerism in allogeneic transplantation model by infusing the bone marrow cells from C57BL/6 mice to BALB/c mice.Conclusions Bone marrow-derived cells can be successfully grafted into various recipient tissues receiving a 2.5 Gy dose of radiation in syngeneic mice,but not in allogeneic mice.This nonlethal model may help to further study the plasticity and mechanism of bone marrow-derived cells in tissue repair and regeneration after radiation injury.

2.
Rev. cuba. hematol. inmunol. hemoter ; 26(4): 352-358, Oct.-Dec. 2010.
Article in English | LILACS | ID: lil-584709

ABSTRACT

Aunque el linfedema es una enfermedad crónica inhabilitante común que causa morbilidad significativa en los pacientes afectados, el tratamiento para esta enfermedad se mantiene muy limitada y en la mayor parte de los casos resulta ineficaz. Algunos datos reportados sugieren que algunas de las células madre derivadas de la medula ósea pueden intervenir en la linfangiogénesis. Al parecer, los vasos sanguíneos y los vasos linfáticos podrían usar la misma población celular para la vasculogénesis y la linfangiogénesis. Por consiguiente, la terapia con células madre adultas podría ser una nueva estrategia útil para el tratamiento de linfedema. En el presente trabajo se informa la resolución de un linfedema bilateral severo de miembros inferiores después de la implantación de células madre autólogas derivadas de la médula ósea. Hasta donde sabemos, este es el primer caso de linfedema crónico de los miembros inferiores tratado exitosamente con células madre autólogas. Este método de tratamiento es económico, relativamente simple, fácil de realizar y una opción que abre nuevas vías para el tratamiento del linfedema


Although lymphedema is a common disabling disease causing significant morbidity for affected patients, treatment for this condition remains limited and largely ineffective. Some reported data suggest that some bone-marrow derived cells may play a role in lymphangiogenesis. It appears that blood vessels and lymphatic vessels might use the same population of cells for vasculogenesis and lymphangiogenesis. Therefore, adult stem cell therapy could be a new useful strategy for the treatment of lymphedema. We report a resolution of a severe lower limb bilateral lymphedema after implantation of autologous adult stem cells derived from bone marrow. As far as we know, this is the first reported case with chronic lower limb lymphedema treated successfully with autologous cell therapy. This procedure is a low-cost, relatively simple and easy to perform option that opens new ways for the treatment of lymphedema


Subject(s)
Humans , Male , Middle Aged , Adult Stem Cells/physiology , Bone Marrow Cells/physiology , Lymphedema/therapy , Stem Cell Transplantation/methods , Lymphangiogenesis
3.
Journal of the Korean Society for Vascular Surgery ; : 1-7, 2004.
Article in Korean | WPRIM | ID: wpr-48607

ABSTRACT

PURPOSE: The objective of this study is to develop a tissue-engineered vascular graft using autologous bone marrow-derived cells (BMCs) and allogenous acellular vascular graft. METHOD: We developed a tissue- engineered vascular patch using autologous BMCs and allogenous acellularized tissue patches. The patches were implanted into the inferior vena cava of a canine in vivo model. Three weeks after implantation, the retrieved patches were investigated by histological and immunohistochemical analyses. RESULT: Cultured BMCs differentiated into endothelium-like and smooth muscle-like cells. The patch graft maintained patent for 3 weeks without any signs of thrombus formation. Histological, immunohistochemical, and scanning electron microscopic analyses of the retrieved patches revealed that new vascular tissues were successfully reconstructed within the patch matrices. CONCLUSION: The tissue-engineered vascular patch using autogenous BMCs and allogenous acellularized matrix maintained patent for 3 weeks and showed vascular tissues generation similar to native blood vessel. The findings of no thrombus and no aneurysmal formation in patch indicated good antithrombogenic property and mechanical property. This study demonstrates the feasibility of utilizing BMCs as an alternative cell source to reconstruct vascular tissues.


Subject(s)
Aneurysm , Blood Vessel Prosthesis , Blood Vessels , Bone Marrow Cells , Bone Marrow , Thrombosis , Tissue Engineering , Transplants , Vena Cava, Inferior
SELECTION OF CITATIONS
SEARCH DETAIL